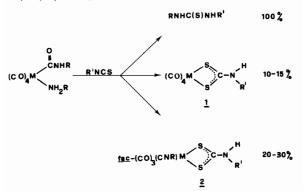
Interaction of Metal—Carbamoyl Derivatives with Organic Isothiocyanates

LUIGI BUSETTO and ANTONIO PALAZZI

Istituto di Tecnologie Chimiche Speciali, Facoltà di Chimica Industriale dell'Università, Bologna, Italy


Received July 29, 1981

Unlike CS₂, which provides good yields of $M(CO)_4S_2CNHCH_3$ on treatment with $M(CO)_4$ - $(NH_2CH_3)(CONHCH_3)$ [1] (M = Mn, Re):

$$M(CO)_4(NH_2CH_3)CONHCH_3 + CS_2 \rightarrow$$

$$M(CO)_4S_2CNHCH_3 + CO + NH_2CH_3$$
(1)

moderate yields of products arising from desulfurization and sulfur incorporation are obtained from $M(CO)_4(NH_2R)CONHR$ and R'NCS:

 $M = Mn; R = CH_3, C_6H_{11}; R' = CH_3, C_6H_5, C_6H_{11}, CH_2C_6H_5; M = Re; R = CH_3; R' = CH_3$

In fact by reacting the carbamoyl derivative Mn(CO)₄(NH₂CH₃)CONHCH₃ with excess of CH₃-NCS in tetrahydrofuran at room temperature for several hours, we have obtained the stoichiometric amount of the disubstituted N,N-methylthiourea, CH₃NHC(S)NHCH₃, the dithiocarbamate complex Mn(CO)₄S₂CNHCH₃, (1a) in about 10% yield and the methyl isocyanide derivative fac-Mn(CO)₃-(CNCH₃)S₂CNHCH₃, (2a), in about 25% yield. These two complexes have been recently obtained by Knox et al. [2] as unique products from the reaction between [Mn(CO)₅]⁻ and CH₃NCS. Their formation has been explained in terms of a sulfur abstraction from methylisothiocyanate [3, 4] which leads to the formation of an intermediate anion [Mn(CO)₄S₂-CNCH₃]⁻ which, in agreement with the high nucleophilicity explicated by the nitrogen of the dithiocarbonimidate ligand [5], abstracts a proton from some source to give the corresponding dithiocarbamate complex (1a). The consequent evolution of methylisocyanide accounts for the isolation of the isocyanide derivative (2a).

Despite the striking similarities between our reaction products and those obtained from carbonyl anions and isothiocyanates, the mechanisms involved must be substantially different. These differences are well evidenced by the reaction scheme (2) which shows that the carbamoyl derivatives $M(CO)_4(NH_2-CH_3)CONHCH_3$ react with R'NCS to produce together with N,N'-disubstituted thioureas the dithiocarbamate complexes (1 and 2) in which the dithioligand bears the alkyl or aryl group of the incoming R'NCS. In addition, the isocyanide coordinated in type 2 complexes must not be formed by simple sulfur abstraction from the R'NCS but more likely arises from the coordinated –CONHR group of the starting derivatives.

As an example, by reacting $Mn(CO)_4(NH_2CH_3)$ -CONHCH₃ and C₆H₅NCS in benzene at room temperature, the thiourea CH₃NHC(S)NHC₆H₅ is quantitatively recovered together with Mn(CO)₄S₂-CNHC₆H₅, (1b), and the isocyanide Mn(CO)₃-(CNCH₃)S₂CNHC₆H₅ complex, (2b), which have been separated by column chromatography.

As shown in Table I, the i.r. spectrum of $Mn(CO)_3$ -(CNCH₃)S₂CNHC₆H₅ exhibits strong CO absorptions at 2020, 1950 and 1922 cm⁻¹ (consistent with a *fac*-Mn(CO)₃ arrangement), and a medium-strong band at 2200 cm⁻¹ attributable to the ν CN of the coordinated CNCH₃ group. However the ¹H n.m.r. spectrum shows a singlet at τ 6.40 and a broad signal in the range τ 2.1–2.9, attributable to the CH₃ and NHC₆H₅ groups respectively. The mass spectrum of the isocyanide derivative reveals, together with the parent ion, signals due to the successive loss of the three CO and the base peak at 223 m/e corresponding to [MnS₂CNHC₆H₅]⁺, which is also present as the most intense peak in the mass spectrum of Mn(CO)₄S₂CNHC₆H₅.

Additional evidence of this unusual reaction path comes from the reaction of $Mn(CO)_4(NH_2C_6H_{11})$ -CONHC₆H₁₁ with CH₃NCS and from the reaction of $Mn(CO)_4(NH_2CH_3)$ CONHCH₃ with C₆H₁₁NCS which form (*Ia*) and (*2e*) or (*Ic*) and (*2c*) respectively. The different natures of the type 2 complexes fac-Mn(CO)₃-(CNCH₃)(S₂CNHC₆H₁₁), (*2c*), and fac-Mn(CO)₃-(CNC₆H₁₁)S₂CNHCH₃, (*2e*), readily detectable by ¹H n.m.r. analysis (see Table I), is an indication that the coordinated isocyanide does not arise from a direct metal-isothiocyanate interaction. The latter would afford M(CO)₃(CNR')S₂CNHR' complexes resulting from a disproportion of the heterocumulene R'NCS, as proposed in all the cases in which

TAE	TABLE I. Physical and Spectroscopic Data for the New Compounds.	New Compounds.				
Com	Compounds	Colour	M.p. (°C)	I.r. bands (cm ⁻¹) ^a		¹ Η N.m.r. (τ) ^b
				ν(C≡N)	µ(C≡0)	
(1a)	Mn(CO) ₄ S ₂ CN(H)CH ₃ ^c	yellow	81–82		2087m, 2012vs, 1998s	2.98(br, 1H), 6.90
			(dec.)		1958vs	(d, J 5 Hz, 3H)
(qI)	Mn(CO) ₄ S ₂ CN(H)C ₆ H ₅ ^c	yellow	146		2088m, 2010vs, 1995s	2.60 (br)
			(dec.)		1960vs	
(<i>Ic</i>)	Mn(CO) ₄ S ₂ CN(H)C ₆ H ₁₁	brown	132		2082m, 2003vs, 1995s	3.2 (br, 1H), 7.7-8.8
			(dec.)		1945vs	(br, 11H)
(14)	(1d) Mn(CO) ₄ S ₂ CN(H)CH ₂ C ₆ H ₅ ^d	yellow			2098m, 2032vs, 2005s	
					1973vs	
(2a)	Mn(CO) ₃ (CNCH ₃)S ₂ CN(H)CH ₃ ^c	yellow	125	2190m	2030vs, 1966vs, 1932vs	3.0(br, 1H) 6.33 (s, 3H),
			(dec.)			6.9(d, J5Hz, 3H)
(2b)	$Mn(CO)_3(CNCH_3)S_2CN(H)C_6H_5$	yellow	145	2200m	2020vs, 1950vs, 1922vs	1.5(br, 1H), 2.1–2.9
			(dec.)			(br, 5H), 6.4(s, 3H)
(3	Mn(CO) ₃ (CNCH ₃)S ₂ CN(H)C ₆ H ₁₁	yellow	138-140	2198m	2025vs, 1958vs, 1925vs	3.1(br, 1H), 6.4(s, 3H)
			(dec.)			7.6-8.8(br, 11H)
(2d)	Mn(CO) ₃ (CNCH ₃)S ₂ CN(H)CH ₂ C ₆ H ₅	yellow	125-127	2200m	2028vs, 1960vs, 1930vs	2.1(br, 1H), 2.26(br, 5H)
			(dec.)			5.46(br, 2H), 6.61(s, 3H)
(2e)	Mn(CO) ₃ (CNC ₆ H ₁₁)S ₂ CN(H)CH ₃	yellow	115-118	2160m	2020vs, 1968vs, 1925vs	3.3(br, 1H), 7.0(d, J 5Hz,
			(dec.)			3H), 7.7-8.8(br, 11H)
	Re(CO) ₄ S ₂ CN(H)CH ₃ ^c	white	78–79		2013m, 2005vs, 1988s	3.35(br, 1H), 7.05(d,
			(dec.)		1948vs	J5Hz, 3H)
	Re(CO) ₃ (CNCH ₃)S ₂ CN(H)CH ₃ ^c	pale-yellow	108	2200m	2022vs, 1950vs, 1918vs	3.2(br, 1H), 6.44(s, 3H)
			(dec.)			6.94(d, J5Hz, 3H)
a In (^a In CCI ₄ . ^b In CDCI ₃ , τ in ppm, TMS as internal standard.	standard. ^c See references 1 and 2.		^d Obtained in impure form.		

L40

similar reactions have been studied and mixed isocyanide-dithiocarbamate complexes such as Pt-(PPh₃)(CNPh)(S₂CNPh) [4], [Rh[X-C(Z)-Y](CNR)-(S₂CNR)(PPh₃), ([X-C(Z)-Y] = an unsaturated hetero-allylic chelate group [6]), and M(CO)₃CNR)-S₂CNHR [2] have been obtained. On the other hand, the quantitative formation of N,N'-disubstituted thioureas which probably arise from the reaction of the amine and the R'NCS, excludes the possibility that the coordinated NH₂R group is the source of the isocyanide complex.

Although we cannot at present develop a complete explanation for the reactions studied, the results obtained may substantiate the idea of a nucleophilic attack on the electrophilic carbon atom of the isothiocyanate by the nitrogen of the coordinated CONHR group. Thus by analogy with the known reactivity of CS_2 toward the same carbamoyl derivatives [1], formation of a probable intermediate of the type:

may occur, which by interaction with a second R'NCS molecule ejects the isocyanide CNR group to afford complexes of the type $M(CO)_4S_2CNHR'$ which in turn are the source of $M(CO)_3(CNR)S_2CNHR'$ complexes on carbon monoxide substitution by the formed isocyanide.

Experimental

The carbamoyl derivatives $M(CO)_4(NH_2R)$ -(CONHR), M = Mn, Re, were prepared according to literature methods [7, 8]. I.r. and ¹H n.m.r. spectra were recorded on Perkin-Elmer 180 and on JEOL C-60 ML or on Varian XL-100 spectrophotometers respectively. Mass spectra were recorded on a JEOL JMS-D100 working at 75 eV.

All the reactions were carried out in inert atmosphere and the products reported in scheme 2 have been fully characterized by elemental analysis and spectroscopic properties. General preparative procedures are described as follows: One mmol of $M(CO)_4(NH_2R)(CONHR)$ dissolved in 100 ml of tetrahydrofuran was treated at room temperature with a tenfold excess of R'NCS. After stirring for several hours the mixture was filtered and the solvent was evaporated under reduced pressure. The residue was slurried in CH_2Cl_2 and placed on a 2 \times 30 column of silica gel. Elution with a 2:1 mixture of CH_2Cl_2 -hexane gave the products in the following sequence: thiourea, tetracarbonyldithiocarbamate complex, and tricarbonylisocyanide-dithiocarbamate complex. The complexes were recrystallized from CH_2Cl_2 by addition of hexane.

Anal.: $[Mn(CO)_3(CNCH_3)S_2 CN(H)C_6H_5]$: Found: C, 41.2; H, 2.7; N, 8.1%; $C_{12}H_9N_2O_3MnS_2$ requires: C, 41.38; H, 2.60; N, 8.04%. $[Mn(CO)_3-(CNCH_3)S_2CN(H)C_6H_{11}]$: Found: C, 40.5; H, 4.3; N, 7.8%; $C_{12}H_{15}N_2O_3MnS_2$ requires: C, 40.68; H, 4.27; N, 7.91%. $[Mn(CO)_3(CNC_6H_{11})S_2CN(H)CH_3]$: Found: C, 40.6; H, 4.1; N, 7.8%; $C_{12}H_{15}N_2O_3MnS_2$ requires: C, 40.68; H, 4.27; N, 7.91%. $[Mn(CO)_3-(CNCH_3)S_2CN(H)CH_2C_6H_5]$: Found: C, 43.2; H, 3.1; N, 7.6%; $C_{13}H_{11}N_2O_3MnS_2$ requires: C, 43.09; H, 3.06; N, 7.73%.

Acknowledgement

The National Council of Research (CNR) and the Ministero della Pubblica Instruzione have provided partial support for this study.

References

- 1 L. Busetto, A. Palazzi and V. Foliadis, Inorg. Chim. Acta, 40, 147 (1980).
- 2 S. R. Finnimore, R. Goddard, S. D. Killops, S. A. R. Knox and P. Woodward, J. Chem. Soc. Dalton, 1247 (1978).
- 3 T. A. Manuel, *Inorg. Chem.*, 3, 1703 (1964).
 4 F. L. Bowden, R. Giles and R. N. Haszeldine, J. Chem. Soc. Chem. Comm., 578 (1974).
- 5 R. O. Harris, J. Powell, A. Walker and P. V. Yaneff, J. Organometal. Chem., 141, 217 (1977).
- 6 D. H. M. W. Thewissen and H. L. M. Van Gaal, J. Organometal. Chem., 172, 69 (1979).
- 7 R. J. Angelici and A. Kruse, J. Organometal. Chem., 22, 461 (1970).
- 8 R. J. Angelici and D. L. Denton, *Inorg. Chim. Acta*, 2, 398 (1968).